Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Agric Food Chem ; 71(3): 1477-1487, 2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2185453

ABSTRACT

Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Pyroptosis is involved in the pathogenesis of coronavirus, but its role in TGEV-induced intestinal injury has yet to be fully elucidated. Eugenol, an essential plant oil, plays a vital role in antiviral innate immune responses. We demonstrate the preventive effect of eugenol on TGEV infection. Eugenol alleviates TGEV-induced intestinal epithelial cell pyroptosis and reduces intestinal injury in TGEV-infected piglets. Mechanistically, eugenol reduces the activation of NLRP3 inflammasome, thereby inhibiting TGEV-induced intestinal epithelial cell pyroptosis. In addition, eugenol scavenges TGEV-induced reactive oxygen species (ROS) increase, which in turn prevents TGEV-induced NLRP3 inflammasome activation and pyroptosis. Overall, eugenol protects the intestine by reducing TGEV-induced pyroptosis through inhibition of NLRP3 inflammasome activation, which may be mediated through intracellular ROS levels. These findings propose that eugenol may be an effective strategy to prevent TGEV infection.


Subject(s)
Transmissible gastroenteritis virus , Animals , Eugenol/pharmacology , Inflammasomes/genetics , Intestines , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Reactive Oxygen Species , Swine , Transmissible gastroenteritis virus/physiology , Phosphate-Binding Proteins/metabolism , Gasdermins/metabolism
2.
Antioxidants (Basel) ; 11(9)2022 Sep 18.
Article in English | MEDLINE | ID: covidwho-2032830

ABSTRACT

Transmissible gastroenteritis virus (TGEV), a coronavirus that causes severe diarrhea due to oxidative stress in the piglet intestine, is a major cause of economic loss in the livestock industry. However, limited interventions have been shown to be effective in the treatment of TGEV. Here, we demonstrate the therapeutic activity of eugenol in TGEV-induced intestinal oxidative stress and apoptosis. Our data show that eugenol supplementation protects intestine and IPEC-J2 cells from TGEV-induced damage. Mechanistically, eugenol reduces TGEV-induced oxidative stress in intestinal epithelial cells by reducing reactive oxygen species levels. Interestingly, eugenol also inhibits TGEV-induced intestinal cell apoptosis in vitro and in vivo. In conclusion, our data suggest that eugenol prevents TGEV-induced intestinal oxidative stress by reducing ROS-mediated damage to antioxidant signaling pathways. Therefore, eugenol may be a promising therapeutic strategy for TGEV infection.

3.
Front Immunol ; 13: 921613, 2022.
Article in English | MEDLINE | ID: covidwho-2009864

ABSTRACT

Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatory in vitro and in vivo; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration (IgG) but also significantly decreased serum inflammatory cytokine concentration (TNF-α) in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression of NF-κB mRNA and the phosphorylation level of NF-κB P65 protein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein (ZO-1) and mRNA expression levels of nutrient transporter-related genes (GluT-2 and CaT-1) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression of ZO-1 and Occludin in IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression of ZO-1 and Occludin, which may be related to the inhibition of NF-κB signaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.


Subject(s)
Coronavirus , Transmissible gastroenteritis virus , Animals , Cell Line , Coronavirus/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , NF-kappa B/metabolism , Occludin , RNA, Messenger , Signal Transduction , Swine , Transmissible gastroenteritis virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL